Foundations: Large Language Models

Sebastian Schuster

Seminar "What do language models really understand"? April 13, 2023

Plan for today

- Organizational matters
- What are (large) language models?
- The transformer architecture
- Two popular pre-trained models: BERT and GPT-3

Organizational matters

https://sebschu.github.io/Im-understanding-seminar/

Admission

- Everyone here should have received an email that they are admitted/ waitlisted — if not please talk to me after the seminar
- Registrants through CS seminar system: There may still be some changes to the list of participants from CS due to The Algorithm
- Waitlisted participants: List of seminar participants should be finalized next week
- If you are thinking about dropping the course, make up your mind now so that people on the waitlist can take it
- If you don't make it off the waitlist, you are welcome to audit if you can find a seat

Structure of the course

- First three sessions: Lectures by me on foundations
- Remaining 10 sessions:
 2 student presentations on papers each week

More on presentations next week!

Requirements

- Everybody should read both papers before class
- Optional (but probably helpful) to read papers in the first three weeks
- Starting in week 4, you have to submit a question/brief comment on each paper by the evening before the seminar (how to submit TBA)
- You'll get most out of this seminar by engaging in the discussions!

Grading criteria

- For students taking the seminar for **4 credits**:
 - Presentation: 66.6%
 - Questions/comments about readings: 33.3%
- For students taking the seminar for **7 credits**:
 - Presentation: 40%
 - Questions/comments about readings: 20%
 - Final paper: 40%
- For people who are not in the LST MS program: Ask your study advisor whether you can take the seminar for **4 credits.**

Schedule

Date	Торіс	Papers	Presenter
04/13/2023	Foundations: Large Language Models	Devlin et al. (2019), Brown et al. (2020)	Sebastian
04/20/2023	Foundations: Fine-tuning and reinforcement learning from human feedback	Ouyang et al. (2022)	Sebastian
04/27/2023	Foundations: What does it mean to 'understand'? Methods for assessing understanding.	Bender and Koller (2020), Piantadosi and Hill (2022)	Sebastian
05/04/2023	Methods: Behavioral experiments and probing	Linzen et al. (2016), Tenney et al. (2019)	
05/11/2023	Negation	Ettinger (2020), Shivagunde et al. (2023) ?	
05/16/2023 (Special day/time!)	Compositionality	Kim and Linzen (2020), Qiu et al. (2022)	
05/18/2023	no class (public holiday)		
05/25/2023	Entity tracking / world models I	Li et al. (2021), Kim and Schuster (to appear)	
06/01/2023	Entity tracking / world models II	Toshniwal et al. (2021), Li et al. (2023)	
06/06/2023 (Special day/time!)	Discourse understading and connectives	Pandia and Ettinger (2021), Pandia et al. (2021)	
06/08/2023	no class (public holiday)		
06/15/2023	Pragmatic inferences	Hu et al. (2022), Ruis et al. (2022)	
06/22/2023	Metaphors / Figurative meaning	TBD	
06/29/2023	Grounding I	TBD	
07/06/2023	Grounding II	TBD	
07/13/2023	no class		
07/20/2023	no class		

Signup for presentation slots happening next week!

Things to note about schedule

- We end early: No lectures on July 13 and July 20!
- 2 public holidays: No lectures on May 18 and Jun 8!
- 2 special meetings: May 16 and Jun 6 8:15-9:45?

Contents

• 3 foundation lectures:

- (Large) language models
- Recent developments: Finetuning and reinforcement learning on human feedback
- Philosophical background: What does it mean to "understand"?
- 1 week: foundational papers on evaluating LM capabilities (syntax and semantics)
- 9 weeks: evaluating various aspects of understanding

Office hours

Send me an email / a message on teams to schedule a meeting

Questions about organizational matters?

Language Models

What is a language model?

P(next word | context)

A conditional probability distribution over the **next word** from a fixed vocabulary, given **a sequence of previous words**.

What is a language model?

P(next word | "The cat")

Next word	P(next word context)
а	0.000006
aardvark	0.000002
aarhus	0.0000001
mat	0.000003
on	0.004
sat	0.1
zebra	0.00007

Scoring words and sequences

Scoring words:

P(next word | context)

Scoring sequences:

P(on a mat | the cat sat)= P(on | the cat sat)

the cat

Next word	P(next word the cat)
а	0.000006
aardvark	0.00002
aarhus	0.000001
mat	0.000003
•••	
on	0.004
sat	0.1
zebra	0.00007

the cat sat

Next word	P(next word the cat)
а	0.000006
aardvark	0.00002
aarhus	0.000001
mat	0.000003
on	0.004
sat	0.1
zebra	0.00007

the cat sat

Next word	P(next word the cat sat)
а	0.000006
aardvark	0.00002
aarhus	0.000001
mat	0.000003
on	0.15
sat	0.0001
zebra	0.00007

the cat sat on

Next word	P(next word the cat sat on)
а	0.2
aardvark	0.00002
aarhus	0.000001
mat	0.000003
•••	
on	0.000015
sat	0.0001
zebra	0.00007

the cat sat on a

Next word	P(next word the cat sat on a)
а	0.00004
aardvark	0.00002
aarhus	0.000001
mat	0.1
••••	
on	0.000015
sat	0.0001
zebra	0.007

the cat sat on a mat

Where do the probabilities come from?

- Pre-2015ish:
 - **Counting** short sequences in large corpora
 - One problem: Estimates are very poor for very rare sequences/sequences that don't appear in the corpus
- Post-2015ish:
 - Neural language models

A neural language model

Probability distribution over the next word $P(w_{k+1})$

How to represent the context?

- Neural networks can only process numerical inputs
- We therefore need to represent context w_1, w_2, \ldots, w_k using **numbers**
- One method one-hot encoding: A vector such that one dimension corresponds to one word in vocabulary (= the *finite* set of words that can be encoded)
- The representation of a word is a vector with one 1 (hence one-hot) and 0 for all other dimensions

Word embeddings

- Alternative to one-hot encoding word embeddings: Represent every word as a continuous *d*-dimensional vector (for example, 300-dimensional vector)
- Learn these vectors as part of training the language model
- Ideally, these vectors are similar (low cosine distance between vectors) for words with similar meaning
 - vectors for *cat* and *dog* should be closer together than vectors for *cat* and *marmalade*
 - In practice, this tends to happen

Word embeddings: Example

- Vocabulary V = {cat, dog, mat, on, sat, the}
- Dimension d = 5

	d_1	d_2	d_3	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

- Values are now uninterpretable but ideally encode similarity
- Dense (= not sparse) encoding we use a fixed dimension independent of vocabulary size

Word embeddings: Remaining issue

- Still difficult to represent words that are not in the vocabulary:
 - Solutions:
 - Learning a vector for a special <UNK> word
 - Using character based embeddings (for example, embeddings for every letter in the alphabet)
 - Using subword tokens

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

- 1. For each word w_i , look up word vectors in **embedding table** of dimension $|V| \times d$
 - → results in a list of word vectors v_1, v_2, \ldots, v_k where v_i corresponds to the word vector for word w_i
- 2. We **stack** these vectors to form a matrix of dimension $d \times k$

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

1. Look up vectors:

0.544 -0.678 0.604 0.944 0.632

	d_1	d_2	d_3	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

(0.544)		(-0.023)
-0.678		1.354
0.604	,	-0.553
0.944		-0.367
(0.632)		(0.975)

	d_1	d_2	d_3	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

(0.544)		(-0.023)		(-1.079)
-0.678		1.354		-0.612
0.604	,	-0.553	,	0.594
0.944		-0.367		-1.057
(0.632)		(0.975)		(-1.186)

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

(0.544)		(-0.023)		(-1.079)		(-0.262)
-0.678		1.354		-0.612		-0.923
0.604	,	-0.553	,	0.594	,	1.097
0.944		-0.367		-1.057		-0.724
0.632		0.975		(-1.186)		(-1.078)

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

(0.544)		(-0.023)		(-1.079)		(-0.262)		(0.544)
-0.678		1.354		-0.612		-0.923		-0.678
0.604	,	-0.553	,	0.594	,	1.097	,	0.604
0.944		-0.367		-1.057		-0.724		0.944
0.632		(0.975)		(-1.186)		(-1.078)		(0.632)

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

Input: The cat sat on the

1. Look up vectors:

(0.544)		(-0.023)		(-1.079)		(-0.262)		(0.544)
-0.678		1.354		-0.612		-0.923		-0.678
0.604	,	-0.553	,	0.594	,	1.097	,	0.604
0.944		-0.367		-1.057		-0.724		0.944
0.632		0.975		(-1.186)		(-1.078)		0.632

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

2. Stack vectors to form input matrix of dimension $d \times k$:

0.544	-0.023	-1.079	-0.262	0.544
-0.678	1.354	-0.612	-0.923	-0.678
0.604	-0.553	0.594	1.097	0.604
0.944	-0.367	-1.057	-0.724	0.944
0.632	0.975	-1.186	-1.078	0.632)

input representation

A neural language model

Some mysterious neural network

Matrix with word embeddings

Probability distribution over the next word $P(w_{k+1})$

A neural language model

Context of previous words w_1, w_2, \ldots, w_k

Matrix with word embeddings

Some mysterious neural network

Vector representing the context

Probability distribution over the next word $P(w_{k+1})$

l-dimensional vector representing the context *c* Probability distribution over the next word $P(w_{k+1})$

Weight matrix S:

	d_1	d_2	 d_{l-1}	d_l
cat	-4.496	0.363	 5.246	0.534
dog	-0.053	0.652	 -1.370	-2.637
mat	0.610	0.079	 0.750	-1.942
on	-0.262	-0.657	 0.897	-1.577
sat	0.945	-0.864	 -3.184	0.991
the	0.739	0.902	 -5.206	3.288

$$P(w_{k+1} \mid c) = \frac{\exp s_{w_{k+1}} \cdot c}{\sum_{w' \in V} \exp s_{w'} \cdot c}$$

Weight matrix S:

	d_1	d_2	 d_{l-1}	d_l
cat	-4.496	0.363	 5.246	0.534
dog	-0.053	0.652	 -1.370	-2.637
mat	0.610	0.079	 0.750	-1.942
on	-0.262	-0.657	 0.897	-1.577
sat	0.945	-0.864	 -3.184	0.991
the	0.739	0.902	 -5.206	3.288

l-dimensional vector representing the context *c* Probability distribution over the next word $P(w_{k+1})$ Dot product between weight for word w_{k+1} and context vector *c* $P(w_{k+1} \mid c) = \frac{\exp s_{w_{k+1}} \cdot c}{\sum_{w' \in V} \exp s_{w'} \cdot c}$

Weight matrix S:

	d_1	d_2	 d_{l-1}	d_l
cat	-4.496	0.363	 5.246	0.534
dog	-0.053	0.652	 -1.370	-2.637
mat	0.610	0.079	 0.750	-1.942
on	-0.262	-0.657	 0.897	-1.577
sat	0.945	-0.864	 -3.184	0.991
the	0.739	0.902	 -5.206	3.288

l-dimensional vector representing the context *c* Probability distribution over the next word $P(w_{k+1})$

Weight matrix S:

	d_1	d_2	 d_{l-1}	d_l	
cat	-4.496	0.363	 5.246	0.534	
dog	-0.053	0.652	 -1.370	-2.637	
mat	0.610	0.079	 0.750	-1.942	$= s_{mat}$
on	-0.262	-0.657	 0.897	-1.577	
sat	0.945	-0.864	 -3.184	0.991	
the	0.739	0.902	 -5.206	3.288	

$$P\left(\text{mat} \mid c\right) = \frac{\exp s_{\text{mat}} \cdot c}{\sum_{w' \in V} \exp s_{w'} \cdot c}$$

A neural language model

Context of previous words w_1, w_2, \ldots, w_k

Matrix with word embeddings

Some mysterious neural network

Vector *c* representing the context

Probability distribution over the next word $P(w_{k+1})$

The Transformer Architecture

Transformer models

- Transformer models take an input representation and output a context representation
- They explicitly model word order and dependencies between words

Overall architecture

Overall architecture

- Intuition: the output representation y_i of a word w_i should be a combination of its own representation and the representations of other words that it depends on (syntactically, in terms of meaning, ...)
- We do this by computing an **attention vector** α_i
- The output representation y_i is a weighted sum of all the input representations

$$y_i = \sum_{0 \le j \le k} \alpha_{ij} w_j$$

Scaled dot-product attention

Multi-head attention: Motivation

- There are multiple types of dependencies between words:
 - Syntactic: "The keys to the cabinet are on the table"
 - Arguments of a verb: "The dog chases the cat"
 - Co-reference: "The student saw herself in the mirror"
- A single self attention mechanism cannot really capture all these different types of dependencies

- Transformers generally use multiple attention mechanisms (called heads) within a single layer
- Each of these attention mechanisms uses its own set of parameters to compute the attention vector α_i
- We therefore compute a separate attention vector for each of the *p* heads: $\alpha_i^{(1)}, \alpha_i^{(2)}, \ldots, \alpha_i^{(p)}$ and compute a separate weighted output representation for each head: $y_i^{(1)}, y_i^{(2)}, \ldots, y_i^{(p)}$

Multi-head attention

• The weighted output representations $y_i^{(1)}, y_i^{(2)}, \ldots, y_i^{(p)}$ are then **concatenated and projected down** to the same dimension as the input representation

Multiple layers

- Instead of just doing all these transformations once, Transformer models usually consist of multiple layers (in practice, usually somewhere between 5 and 20 layers)
- The input of layer l is the output of layer l-1

Modeling word order

- The model so far does not encode anything about word order
- We sum over all word representations (weighted by the attention weights) when computing an output representations
 - "the dog chases the cat" and "the cat chases the dog" once again have the same representation
- Solution: positional embeddings

How to represent a context w_1, w_2, \ldots, w_k with positional embeddings

Input: The cat sat on the

1. Look up vectors:

(0.544)		(-0.023)		(-1.079)		(-0.262)		(0.544)
-0.678		1.354		-0.612		-0.923		-0.678
0.604	,	-0.553	,	0.594	,	1.097	,	0.604
0.944		-0.367		-1.057		-0.724		0.944
0.632		0.975		-1.186		(-1.078)		0.632

2. Stack vectors to form input matrix of dimension $d \times k$: $\begin{pmatrix} 0.544 & -0.023 & -1.079 & -0.262 & 0.544 \\ -0.678 & 1.354 & -0.612 & -0.923 & -0.678 \\ 0.604 & -0.553 & 0.594 & 1.097 & 0.604 \\ 0.944 & -0.367 & -1.057 & -0.724 & 0.944 \\ 0.632 & 0.975 & -1.186 & -1.078 & 0.632 \end{pmatrix}$

3. Add parameters indicating the position of each word:

(0.544	-0.023	-1.079	-0.262	0.544	
-0.678	1.354	-0.612	-0.923	-0.678	
0.604	-0.553	0.594	1.097	0.604	
0.944	-0.367	-1.057	-0.724	0.944	
0.632	0.975	-1.186	-1.078	0.632	
0.323	1.343	3.343	-1.232	2.232	L
(-1.234	0.448	-0.379	-1.114	-0.593)	

positional embeddings

	d_1	d_2	<i>d</i> ₃	d_4	d_5
cat	-0.023	1.354	-0.553	-0.367	0.975
dog	-0.053	0.644	-0.245	-0.322	1.056
mat	-0.753	-0.679	0.755	0.054	0.750
on	-0.262	-0.923	1.097	-0.724	-1.078
sat	-1.079	-0.612	0.594	-1.057	-1.186
the	0.544	-0.678	0.604	0.944	0.632

	d_1	d_2
1	0.323	-1.234
2	1.343	0.448
3	3.343	-0.379
4	-1.232	-1.114
5	2.232	-0.593
6	0.534	-1.988

Putting it all together: The full Transformer model

A neural language model

Context of previous words w_1, w_2, \ldots, w_k

Matrix with word embeddings

Some mysterious neural network

Vector *c* representing the context

Probability distribution over the next word $P(w_{k+1})$

A neural language model

Bidirectional Encoder Representations from Transformers (BERT)

Training

Masked Language Modeling

ne chef cooked the meal

Trained on: BooksCorpus (800M words) English Wikipedia (2,500M words).

GPT-3

Generative Pretrained Transformer 3 (GPT-3)

Training

Language Modeling

https://huggingface.co/blog/large-language-models

Progress in NLU

Does this mean these models exhibit deep understanding abilities?!?