-oundations: Large Language Models

Sebastian Schuster

Seminar “What do language models really understand”?
April 13, 2023

Plan for today

- Organizational matters
- What are (large) language models”
- The transformer architecture

- Two popular pre-trained models: BERT and GPT-3

Organizational matters

https://sebschu.github.io/Im-understanding-seminar/

Admission

- Everyone here should have received an email that they are admitted/
walitlisted — if not please talk to me after the seminar

- Registrants through CS seminar system: There may still be some
changes to the list of participants from CS due to
The Algorithm

- Waitlisted participants: List of seminar participants should be finalized
next week

- If you are thinking about dropping the course, make up your mind now
so that people on the waitlist can take it

- If you don’t make it off the waitlist, you are welcome to audit if you can
find a seat

Structure of the course

First three sessions:
Lectures by me on foundations

Remaining 10 sessions:
2 student presentations on papers each week

More on presentations next week!

Requirements

- Everybody should read both papers before class

-+ Optional (but probably helpful) to read papers in the first
three weeks

- Starting in week 4, you have to submit a question/brief
comment on each paper by the evening before the
seminar (how to submit TBA)

+ You'll get most out of this seminar by engaging in the
discussions!

Grading criteria

- For students taking the seminar for 4 credits:

- Presentation: 66.6%

 Questions/comments about readings: 33.3%
- For students taking the seminar for 7 credits:

- Presentation: 40%

- Questions/comments about readings: 20%

- Final paper: 40%

- For people who are not in the LST MS program: Ask your study advisor
whether you can take the seminar for 4 credits.

Schedule

Date

04/13/2023
04/20/2023
04/27/2023
05/04/2023

05/11/2023
05/16/2023 (Special
day/time!)

05/18/2023

05/25/2023

06/01/2023
06/06/2023 (Special
day/time!)

06/08/2023
06/15/2023

06/22/2023
06/29/2023
07/06/2023
07/13/2023

07/20/2023

Signup for presentation slots happening next week!

Topic

Foundations: Large Language Models

Foundations: Fine-tuning and reinforcement learning
from human feedback

Foundations: What does it mean to ‘understand’?
Methods for assessing understanding.

Methods: Behavioral experiments and probing

Negation

Compositionality

no class (public holiday)

Entity tracking / world models |

Entity tracking / world models Il

Discourse understading and connectives

no class (public holiday)

Pragmatic inferences

Metaphors / Figurative meaning
Grounding |
Grounding Il

no class

no class

Papers
Devlin et al. (2019), Brown et al.
(2020)
Ouyang et al. (2022)
Bender and Koller (2020),
Piantadosi and Hill (2022)

Linzen et al. (2016), Tenney et al.
(2019)

Ettinger (2020), Shivagunde et
al. (2023) ?

Kim and Linzen (2020), Qiu et al.
(2022)

Li et al. (2021), Kim and Schuster
(to appear)

Toshniwal et al. (2021), Li et al.
(2023)

Pandia and Ettinger (2021),
Pandia et al. (2021)

Hu et al. (2022), Ruis et al.
(2022)

TBD
TBD

TBD

Presenter

Sebastian

Sebastian

Sebastian

Things to note about schedule

- We end early: No lectures on July 13 and July 20!
- 2 public holidays: No lectures on May 18 and Jun &!

- 2 special meetings:
May 16 and Jun 6 8:15-9:457

Contents

- 3 foundation lectures:
- (Large) language models

+ Recent developments: Finetuning and reinforcement
learning on human feediback

- Philosophical background: What does it mean to
“understand””

1 week: foundational papers on evaluating LM
capabilities (syntax and semantics)

- 9 weeks: evaluating various aspects of understanding

Office hours

- Send me an email / a message on teams to schedule a
meeting

Questions about organizational matters®

Language Models

What is a language model?

P(next word | context)

A conditional probabillity distribution over the next word from a
fixed vocabulary,
given a sequence of previous words.

14

What is a language model?

P(next word | “The cat”)

Next word | P(next word | context)

a | 0.0000006

aardvark | [0.000002

aarhus | 0.0000001

mat I 0.0000003

on B 0.004
sat N 0.1

zebra I 0.00007

Scoring words and sequences

Scoring words:

P(next word | context)

Scoring sequences:

P(on a mat | the cat sat)
P(on | the cat sat)

16

Generating texts

the cat

Next word P(next word | the cat)
a i 0.0000006
aardvark | & 0.000002
aarhus i 0.0000001
mat | 0.0000003
on B 0.004
sat R 0.1
zebra i 0.00007

17

Generating texts

the cat sat

Next word P(next word | the cat)
a i 0.0000006
aardvark | & 0.000002
aarhus i 0.0000001
mat | 0.0000003
on B 0.004
sat R 0.1
zebra i 0.00007

18

Generating texts

the cat sat

Next word P(next word | the cat sat)
a i 0.0000006
aardvark | & 0.000002
aarhus i 0.0000001
mat | 0.0000003
on R 0.15
sat B 0.0001
zebra i 0.00007

19

Generating texts

the cat sat on

Next word P(next word | the cat sat on)
a D o2
aardvark | & 0.000002
aarhus i 0.0000001
mat | 0.0000003
on i 0.0000015
sat B 0.0001
zebra i 0.00007

20

Generating texts

the cat sat on a

Next word P(next word | the cat sat on a)
a i 0.000004
aardvark | & 0.000002
aarhus i 0.0000001
mat _ 0.1
on i 0.0000015
sat B 0.0001
zebra - 0.007

21

Generating texts

the cat sat on a mat

22

Where do the probabilities come from??

- Pre-2015ish:
- Counting short sequences in large corpora

-+ One problem: Estimates are very poor for very rare
seqguences/sequences that don’t appear in the corpus

- Post-2015ish:

- Neural language models

23

A neural language model

Some mysterious neural network

Context Context of previous words Wy, Wy, ..., W,
H

P (Wk +1) Probability distribution over the next word P (Wk +1)

How to represent the context”

Neural networks can only process numerical inputs

- We therefore need to represent context wy, w,, ..., w,
using numbers

- One method — one-hot encoding: A vector such that
one dimension corresponds to one word In
vocabulary (= the finite set of words that can be encoded)

- The representation of a word Is a vector with one 1
(hence one-hot) and O for all other dimensions

Word embeddings

- Alternative to one-hot encoding — word embeddings:
Represent every word as a continuous d-dimensional
vector (for example, 300-dimensional vector)

Learn these vectors as part of training the language model

|deally, these vectors are similar (low cosine distance
between vectors) for words with similar meaning

+ vectors for cat and dog should be closer together than
vectors for cat and marmalade

In practice, this tends to happen

Word embeddings: Example

Vocabulary V = {cat, dog, mat, on, sat, the}

Dimension d =5 d, d, d, d, .
cat 0023 1354 -0553 -0.367 0.975
dog -0.053 = 0.644 @ -0.245 -0.322 1.056
mat -0.753 -0.679 = 0.755 0.054 0.750
on -0.262 = -0.923 1.097 @ -0.724 -1.078
sagt | -1.079 -0612 0594 -1.057 -1.186

the 0.544 -0.678 0.604 0.944 0.632

Values are now uninterpretable but ideally encode similarity

Dense (= not sparse) encoding — we use a fixed dimension independent
of vocabulary size

Word embeddings: Remaining issue

- Still difficult to represent words that
are not in the vocabulary:

‘ SO|UtI0nS d, dy ds d, ds
cat | -0.023 1.354 -0.553 | -0.367 @ 0.975
dog -0.053 0.644 -0.245 -0.322 1.056

Learning a vector for a special mat | 0758 0670 0755 0054 0750
<UNK> Word on | -0.262 -0.923 1.097 @ -0.724 -1.078

sat -1.079 @ -0.612 | 0.594 -1.057 -1.186

the 0.544 @ -0.678 | 0.604 0.944 @ 0.632

Using character based
embeddings (for example,
embeddings for every letter in the
alphabet)

Using subword tokens

How to represent a context wy, w,, ..., w,

1. For each word w;, look up worad
vectors in embedding table of

dimension | V| X d

= results in a list of word vectors
Vi, Vo, ..., Vi, Where v;
corresponds to the word vector
for word w;

2. \We stack these vectors to form a
matrix of dimension d X k

cat
dog
mat
on
sat
the

-0.023
-0.053

-0.753
-0.262

-1.079

0.544

1.354

0.644

-0.679

-0.923

-0.612

-0.678

-0.553
-0.245

0.755

1.097

0.594

0.604

-0.367
-0.322

0.054

-0.724

-1.057

0.944

0.975
1.056

0.750

-1.078

-1.186

0.632

How to represent a context wi, Wy, ..., W;:

Input: The cat sat on the

cat
dog
mat
on
sat

the

-0.023

-0.0563

-0.753 -

-0.262 -

-1.079 | -

0.544 @ -

How to represent a context wi, Wy, ..., W;:

Input: FThe cat sat on the

1. Look up vectors:

(0.544)
—0.678
0.604
0.944
\ 0.632)

cat
dog
mat
on
sat

the

-0.023
-0.0563

-0.753 -
-0.262 -
-1.079 -

0.544 -

How to represent a context wi, Wy, ..., W;:

Input: The €at sat on the

1. Look up vectors:

(0.544) (-0.023)
—~0.678 | | 1.354
0.604 |,|—=0.553
0.944 | | -0.367
L 0.632) 0975 |

cat
dog
mat
on
sat
the

-0.023
-0.053

-0.753 -

-0.262 -

-1.079 -

0.544 @ -

How to represent a context wi, Wy, ..., W;:

Input: The cat gat on the

1. Look up vectors:

(0.544)
—0.678
0.604
0.944

\ 0.632)

(—0.023)
1.354
~0.553
~0.367

L 0.975

(—1.079)
~0.612
0.594
~1.057

cat
dog
mat
on
sat
the

-0.023

-0.0563

-0.753 -

-0.262 -

=il {oler | =

0.544

\—1.186,

How to represent a context wy, w,, ..., w;: Example

Input: The cat sat B the

1. Look up vectors:

(0.544
—0.678
0.604
0.944

L 0.632 |

(—0.023)
1.354
~0.553
~0.367

L 0.975

(—1.079)
~0.612
0.594
~1.057

\—1.186,

(—0.262)
~0.923
1.097
—0.724

\—1.078,

cat -0.023 = 1.354 -0.553 -0.367 @ 0.975

dog -0.053 0.644 @ -0.245 -0.322 | 1.056
mat @ -0.753 -0.679 0.755 @ 0.054 @ 0.750
-1.079 @ -0.612 0594 -1.057 -1.186

the 0.544 @ -0.678 0.604 0.944 @ 0.632

How to represent a context wy, w,, ..., w;: Example

Input: The cat sat on the a4 4 4
cat -0.023 1.354 0.553 0.367 0.975
dog -0.053 0.644 0.245 0.322 1.056

1. Look up vectors:
on -0.262 @ -0.923 1.097 0.724 @ -1.078

(0.544\ /_0.023\ (_1.079\ (—0.262\ (0.544\ sat | -1.079 -0.612 0594 -1.057 -1.186

—0.678| | 1354 | | =0.612] | =0.923] | -0.678 | the 0544 0678 0604 0944 063 |

0.604 |,|-05531],]1 0.594 1.097 0.604

0944 | |-0367| | =1.057| | -0.724] | 0.944

L0632) 1 0975) (-1.186) \-1.078) | 0.632 |

How to represent a context wi, Wy, ..., W;:

Input: The cat sat on the

1. Look up vectors:

(0.544)
—0.678
0.604
0.944

L 0.632 |

(—0.023)
1.354
~0.553
~0.367

L 0.975

(—1.079)
~0.612
0.594
~1.057

\—1.186)

(—0.262)
~0.923
1.097
—0.724

\—1.078)

(0.544)
~0.678
0.604
0.944

L 0.632 |

mat -0.753 -0.679 0.755
on -0.262 @ -0.923 @ 1.097
sat -1.079 = -0.612 0.594

the 0.544 | -0.678 0.604

cat -0.023 1.354 @ -0.553 -

dog @ -0.053 0.644 -0.245 -

2. Stack vectors to form input matrix of dimension d X k:

(0.544
~0.678
0.604
0.944
| 0.632

—0.023 —1.079 —0.262 0.544)
1.354 —0.612 —0.923 —0.678
—~0.553 0594 1.097 0.604
—0.367 —1.057 —0.724 0.944
0975 —1.186 —1.078 0.632)

INnput representation

A neural language model

Context Context of previous words Wy, Wy, ..., W,

pleliRcClo=EEEe . Matrix with word embeddings

Some mysterious neural network

Probability distribution over the next word P (wy ;)

A neural language model

Context Context of previous words Wy, Wy, ..., W,

pleliRcClo=EEEe . Matrix with word embeddings

Some mysterious neural network

Vector representing the context

Probability distribution over the next word P (wy ;)

Computing the probability of the next word:
SoftMax

Ol RElERERIEel [-dimensional vector representing the context ¢

P (W) Probability distribution over the next word P (w1)

Weight matrix S:

exps, -+ C
d d .. d_, 4 P (Wk+1 | C‘) _ k+1

cat | -4.496 0363 .. | 5246 0534 Z , GXp ¢ . C
dog -0053 0652 .. | -1370 -2.637 weV w

mat = 0610 0079 .. | 0750 -1.942

on | -0262 -0657 .. | 0897 -1577

sat | 0945 | -0.864 .. | -3.184 0.991

the = 0739 0902 .. | -5206 3.288

Computing the probability of the next word:
SoftMax

oo el [-dimensional vector representing the context ¢

P (W) Probability distribution over the next word P (w1)
Dot product between
weight for word wy, 4

- - _ and context vector ¢ \

Weight matrix S:
CXP § - C
P Wi+1

dl dz - dl—l dl P Wk_l_ 1 | C —
cat -4.496 @ 0.363 5.246 0.534 Z eX .
dog -0.053 0652 .. | -1.370 -2.637 w'eV p SW, ¢
mat 0.610 0.079 0.750 @ -1.942
on -0.262 @ -0.657 0.897 -1.577
sat 0.945 -0.864 -3.184 0.991
the 0.739 0.902 -5.206 @ 3.288

Computing the probability of the next word:

SoftMax

Context representation

P (Wk+1>

Weight matrix S:

cat

mat
on
sat

the

d,

-4.496
-0.053

0.610

-0.262

0.945

0.739

d2
0.363
0.652

0.079

-0.657

-0.864

0.902

dl—l

5.246

-1.370

0.750

0.897

-3.184

-5.206

dl
0.534
-2.637
-1.942
-1.577
0.991

3.288

[-dimensional vector representing the context ¢

Probability distribution over the next word P (w1)
Dot product between
weight for word wy . ;

and context vector ¢ \

b (wk+1 | c) _ CXPSy,, €

2 ey EXP S, - €

=

Normalization so that
P (wk+1 | c) is a proper
probability distribution

Computing the probability of the next word:
SoftMax

Ol RElERERIEel [-dimensional vector representing the context ¢

P (W) Probability distribution over the next word P (wy ;)

Weight matrix S:

CXPSmat " ¢

o 4 . 4, 4 P(mat|c) =

4496 0363 .. | 5246 0534 E
cat eV eXp SW/ - C
dog -0.053 0652 .. | -1.370 -2.637 we
mat 0610 0079 .. 0750 -1.942 |=—=

Smat

on | -0262 -0657 .. | 0897 -1577
sat | 0945 | -0.864 .. | -3.184 0.991
the = 0739 0902 .. | -5206 3.288

A neural language model

Context Context of previous words Wy, Wy, ..., W,

pleliRcClo=EEEe . Matrix with word embeddings

Some mysterious neural network

Vector ¢ representing the context

Probability distribution over the next word P (wy ;)

The Transtormer Architecture

Transformer models

- Transformer models take an input representation and
output a context representation

- They explicitly model word order and dependencies
between words

Overall architecture

Output

/- .)
Transformer { Layer Normalize)
Block ,%>
Residual
connection [Feedforward Layer]
A
(Layer Normalize)
-
Residual
connection [Self-Attention Layer]

nput (%)

Overall architecture

Qutput
/- .)
Transformer { Layer Normalize)
Block ,%;
Residual
connection [Feedforward Layer]
A
(Layer Normalize)
G
Residual
connection [Self-Attention Layer]

nput (%)

Self-attention

Intuition: the output representation y; of a word w;

should be a combination of its own representation and
the representations of other words that it depends on
(syntactically, in terms of meaning, ...)

- We do this by computing an attention vector «;

- The output representation y: is a weighted sum of all the
INput representations

Yi = Z aijwj

0<j<k

Scaled dot-product attention

SoftMax

|Mask (opt.) I
| Scale I

#

queries Q keys K

a; = Softmax)

scaling factor

Multi-head attention: Motivation

- There are multiple types of dependencies between
WOords:

- Syntactic: "The keys to the cabinet are on the table”
- Arguments of a verb: “The dog chases the cat”
- Co-reference: “The student saw herself in the mirror”

A single self attention mechanism cannot really capture
all these different types of dependencies

Multi-head attention

- Transformers generally use multiple attention
mechanisms (called heads) within a single layer

- Each of these attention mechanisms uses 1ts own set of
parameters to compute the attention vector «;

- We therefore compute a separate attention vector for
each of the p heads: al.(l), al.(z), o al.(p)
and compute a separate weighted output representation
for each head: yl.(l), yl.(z), o yP)

l

Multi-head attention

. The weighted output representations yl.(l), yl.(z), .

, yi(p)

are then concatenated and projected down to the

same dimension as the input representation

-

Concatenate [

Project down to d/

head1

Outputs

Multihead
Attention
Layer

X |

Multiple layers

- Instead of just doing all these
transformations once, Transformer
models usually consist of multiple
layers (in practice, usually
somewhere between 5 and 20
layers)

- The input of layer [is the output of
layer [— 1

Modeling word order

- The model so far does not encode anything about word
order

- We sum over all word representations (weighted by the
attention weights) when computing an output
representations

-+ “the dog chases the cat” and “the cat chases the dog”
once again have the same representation

- Solution: positional embeddings

-low to represent a context wy, w,, ..., W with
oositional embeddings

Input: The cat sat on the

0.544
—0.678

0.944
0.632

0.544
—0.678
0.604
0.944
0.632

0.544

0.604
0.944

0.604 |,

—0.678

cat -0.023 @ 1.354 | -0.553 -0.367 @ 0.975
1' LOOK Up VeCtorS dog -0.053 @ 0.644 | -0.245 -0.322 1.056
—-0.023) (—-1.079) (-0.262 0.544
1.354 —0612] | =0923| | -0.678 mat = -0.753 -0.679 @ 0.755 @ 0.054 0.750
—0.553 1,1 0.594 |,]| 1.097 |.| 0.604 on | -0.262 | -0.923 1.097 @ -0.724 -1.078
—0.367| | -1.057| | -0.724 0.944
0.975 —1.186 \—1.078 0.632 sat -1.079 @ -0.612 | 0.594 -1.057 @ -1.186
the 0.544 @ -0.678 0.604 0.944 0.632
2. Stack vectors to form input matrix of dimension d X k:
—-0.023 —-1.079 -0.262 0.544
1.354 -0.612 -0.923 -0.678
—-0.553 0594 1.097 0.604
—-0.367 —1.057 —-0.724 0.944
0975 -1.186 —1.078 0.632
dl d2
3. Add parameters indicating the position of each word: 1 | 0828 | -1.204
2 1.343 @ 0.448
—-0.023 —-1.079 -0.262 0.544 3 3.343 -0.379
1.354 —0.612 —0.923 —0.678 4 1232 | 1114
—-0.553 0594 1.097 0.604
—0.367 —1.057 —0.724 0.944 5 2232 -0.5%3
0975 -—-1.186 —1.078 0.632 6 0.534 -1.988

0.632

_ positional embeddings

Putting it all together: The full Transformer model

Output
Probabilities
t
Softmax
t
Linear
4
(" A N
Add & Norm
Feed
Forward
— E—
~ R Add & Norm
£ad & Nom Multi-Head
. Feed Attention
d t } t
on:xar 4 N x
Nix Add & Norm
Add &_Norm Manicact
Multi-Head Multi-Head
Attention Attention
_t _t
_ J _ fr—
Positional Positional
Encodi + & .
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

A neural language model

Context Context of previous words Wy, Wy, ..., W,

pleliRcClo=EEEe . Matrix with word embeddings

Some mysterious neural network

Vector ¢ representing the context

Probability distribution over the next word P (wy ;)

A neural language model

Context Context of previous words Wy, Wy, ..., W,

pleliRcClo=EEEe . Matrix with word embeddings

Several layers of multi-head attention
(+ some other things)

i lEhlEEEpIElell \ector ¢ representing the context

Probability distribution over the next word P (wy ;)

RT

Sidirectional Encoder Representations from
Transformers (BERT)

ﬁSP Mask LM Mask LM \
s s *

BERT
Ecs) = - Ey E[SEP] E - Ey
T L e W

(). EOEE. (-

I |

Masked Sentence A Masked Sentence B
2 »
Unlabeled Sentence A and B Pair

Training

Masked Language Modeling

e chef cooked the meal

Trained on:
BooksCorpus (800M words)
English Wikipedia (2,500M words).

PT-3

Generative Pretrained Transformer 3 (GPT-3)

Output
Probabilities
t
Softmax
{
Linear
—
Add & Norm
Feed
Forward
—— |
4 ™\ Add & Norm
add & or Multi-Head
Feed Attention r in d n
Forv‘vard) } t N x T a e O
Nee—
S [pp— AJd& Nom ~ 400B tokens!
dd 3 orm Maskad
Multi-Head Multi-Head
Attention Attention
_ J . “)
Positional Positional
- ' + ,
Encoding ?_® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Training

Language Modeling
chef

the

1000 7=

GPT-3 (175B)

Megatron-LM (8.3B)

(BN
o

BERT-Large (340M)

Model Size (in billions of parameters)

o
[EEN

LELMo (94M)

0.01
2018 2019 2020 2021 2022

https://huggingface.co/blog/large-language-models

100 Megatron-Turing NLG (530B)

Progress in NLU

SQUAD 2.0 MNLI

100 100
human

75 75
i -
o >
(4] O
= 50 S 50
< 3
X £
LL]

25 25

0 0

2018 2021 2018 2021

Does this ir

Jnderstandi

ean these models exhibit deep
ng abllities?!?

