## Foundations: Large Language Models

Sebastian Schuster

Seminar "What do language models really understand"?
April 13, 2023

## Plan for today

- Organizational matters
- What are (large) language models?
- The transformer architecture
- Two popular pre-trained models: BERT and GPT-3


## Organizational matters

https://sebschu.github.io/lm-understanding-seminar/

## Admission

- Everyone here should have received an email that they are admitted/ waitlisted - if not please talk to me after the seminar
- Registrants through CS seminar system: There may still be some changes to the list of participants from CS due to The Algorithm
- Waitlisted participants: List of seminar participants should be finalized next week
- If you are thinking about dropping the course, make up your mind now so that people on the waitlist can take it
- If you don't make it off the waitlist, you are welcome to audit if you can find a seat


## Structure of the course

- First three sessions:

Lectures by me on foundations

- Remaining 10 sessions:

2 student presentations on papers each week

More on presentations next week!

## Requirements

- Everybody should read both papers before class
- Optional (but probably helpful) to read papers in the first three weeks
- Starting in week 4, you have to submit a question/brief comment on each paper by the evening before the seminar (how to submit TBA)
- You'll get most out of this seminar by engaging in the discussions!


## Grading criteria

- For students taking the seminar for $\mathbf{4}$ credits:
- Presentation: 66.6\%
- Questions/comments about readings: 33.3\%
- For students taking the seminar for $\mathbf{7}$ credits:
- Presentation: 40\%
- Questions/comments about readings: 20\%
- Final paper: $40 \%$
- For people who are not in the LST MS program: Ask your study advisor whether you can take the seminar for $\mathbf{4}$ credits.


## Schedule

| Date | Topic | Papers | Presenter |
| :---: | :---: | :---: | :---: |
| 04/13/2023 | Foundations: Large Language Models | Devlin et al. (2019), Brown et al. (2020) | Sebastian |
| 04/20/2023 | Foundations: Fine-tuning and reinforcement learning from human feedback | Ouyang et al. (2022) | Sebastian |
| 04/27/2023 | Foundations: What does it mean to 'understand'? Methods for assessing understanding. | Bender and Koller (2020), <br> Piantadosi and Hill (2022) | Sebastian |
| 05/04/2023 | Methods: Behavioral experiments and probing | Linzen et al. (2016), Tenney et al. (2019) |  |
| 05/11/2023 | Negation | Ettinger (2020), Shivagunde et al. (2023) ? |  |
| 05/16/2023 (Special day/time!) | Compositionality | Kim and Linzen (2020), Qiu et al. (2022) |  |
| 05/18/2023 | no class (public holiday) |  |  |
| 05/25/2023 | Entity tracking / world models I | Li et al. (2021), Kim and Schuster (to appear) |  |
| 06/01/2023 | Entity tracking / world models II | Toshniwal et al. (2021), Li et al. (2023) |  |
| 06/06/2023 (Special day/time!) | Discourse understading and connectives | Pandia and Ettinger (2021), Pandia et al. (2021) |  |
| 06/08/2023 | no class (public holiday) |  |  |
| 06/15/2023 | Pragmatic inferences | Hu et al. (2022), Ruis et al. (2022) |  |
| 06/22/2023 | Metaphors / Figurative meaning | TBD |  |
| 06/29/2023 | Grounding I | TBD |  |
| 07/06/2023 | Grounding II | TBD |  |
| 07/13/2023 | no class |  |  |
| 07/20/2023 | no class |  |  |

## Signup for presentation slots happening next week!

## Things to note about schedule

- We end early: No lectures on July 13 and July 20!
- 2 public holidays: No lectures on May 18 and Jun 8!
- 2 special meetings: May 16 and Jun 6 8:15-9:45?


## Contents

- 3 foundation lectures:
- (Large) language models
- Recent developments: Finetuning and reinforcement learning on human feedback
- Philosophical background: What does it mean to "understand"?
- 1 week: foundational papers on evaluating LM capabilities (syntax and semantics)
- 9 weeks: evaluating various aspects of understanding


## Office hours

- Send me an email / a message on teams to schedule a meeting


## Questions about organizational matters?

Language Models

## What is a language model?

## P( next word \| context )

A conditional probability distribution over the next word from a fixed vocabulary, given a sequence of previous words.

## What is a language model?

## P(next word | "The cat")

| Next word | P(next word \| context) |
| :---: | :---: |
| a | 0.0000006 |
| aardvark | 0.000002 |
| aarhus | 0.0000001 |
| $\ldots$ |  |
| mat | 0.0000003 |
| $\ldots$ |  |
| on | 0.004 |
| $\ldots$ | 0.1 |
| sat |  |
| $\ldots$ | 0.00007 |

## Scoring words and sequences

## Scoring words:

P( next word | context )

## Scoring sequences:

$$
\begin{aligned}
& \quad \mathrm{P}(\text { on a mat } \mid \text { the cat sat }) \\
& =\mathrm{P}(\text { on } \mid \text { the cat sat })
\end{aligned}
$$

## Generating texts

## the cat

| Next word | P(next word \| the cat) |
| :---: | :---: |
| a | 0.0000006 |
| aardvark | 0.000002 |
| aarhus | 0.0000001 |
| $\ldots$ | 0.0000003 |
| mat |  |
| $\ldots$ | 0.004 |
| on |  |
| $\ldots$ | 0.1 |
| sat | 0.00007 |
| $\ldots$ |  |

## Generating texts

## the cat sat

| Next word | P(next word \| the cat) |
| :---: | :---: |
| a | 0.0000006 |
| aardvark | 0.000002 |
| aarhus | 0.0000001 |
| $\ldots$ | 0.0000003 |
| mat |  |
| $\ldots$ | 0.004 |
| on |  |
| $\ldots$ | 0.1 |
| sat | 0.00007 |
| $\ldots$ |  |

## Generating texts

## the cat sat

| Next word | $\mathbf{P ( n e x t ~ w o r d ~ \| ~ t h e ~ c a t ~ s a t ) ~}$ |
| :---: | :---: |
| a |  |
| aardvark | 0.0000006 |
| aarhus | 0.000002 |
| $\ldots$ | 0.0000001 |
| mat | 0.0000003 |
| $\ldots$ | 0.15 |
| on |  |
| $\ldots$ | 0.0001 |
| sat | 0.00007 |
| $\ldots$ |  |

## Generating texts

## the cat sat on

| Next word | P(next word \| the cat sat on) |
| :---: | :---: |
| $\mathbf{a}$ | 0.2 |
| aardvark | 0.000002 |
| aarhus | 0.0000001 |
| $\ldots$ | 0.0000003 |
| mat | \\| |
| $\ldots$ | 0.0000015 |
| on |  |
| $\ldots$ | 0.0001 |
| sat | 0.00007 |
| zebra | $\square$ |

## Generating texts

## the cat sat on a

| Next word | P(next word $\mid$ the cat sat on a) |
| :---: | :---: |
| a | 0.000004 |
| aardvark | 0.000002 |
| aarhus | 0.0000001 |
| $\ldots$ | 0.1 |
| mat |  |
| $\ldots$ | 0.0000015 |
| on | $\square$ |
| $\ldots$ | 0.0001 |
| sat | 0.007 |
| zebra |  |

## Generating texts

## the cat sat on a mat

## Where do the probabilities come from?

- Pre-2015ish:
- Counting short sequences in large corpora
- One problem: Estimates are very poor for very rare sequences/sequences that don't appear in the corpus
- Post-2015ish:
- Neural language models


## A neural language model

## Context

Context of previous words $w_{1}, w_{2}, \ldots, w_{k}$

## Some mysterious neural network

Probability distribution over the next word $P\left(w_{k+1}\right)$

## How to represent the context?

- Neural networks can only process numerical inputs
- We therefore need to represent context $w_{1}, w_{2}, \ldots, w_{k}$ using numbers
- One method - one-hot encoding: A vector such that one dimension corresponds to one word in vocabulary (= the finite set of words that can be encoded)
- The representation of a word is a vector with one 1 (hence one-hot) and 0 for all other dimensions


## Word embeddings

- Alternative to one-hot encoding - word embeddings: Represent every word as a continuous d-dimensional vector (for example, 300-dimensional vector)
- Learn these vectors as part of training the language model
- Ideally, these vectors are similar (low cosine distance between vectors) for words with similar meaning
- vectors for cat and dog should be closer together than vectors for cat and marmalade
- In practice, this tends to happen


## Word embeddings: Example

- Vocabulary $V=$ \{cat, dog, mat, on, sat, the\}
- Dimension $d=5$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

- Values are now uninterpretable but ideally encode similarity
- Dense (= not sparse) encoding - we use a fixed dimension independent of vocabulary size


## Word embeddings: Remaining issue

- Still difficult to represent words that are not in the vocabulary:
- Solutions:
- Learning a vector for a special <UNK> word

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

- Using character based embeddings (for example, embeddings for every letter in the alphabet)
- Using subword tokens


## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$

1. For each word $w_{i}$, look up word vectors in embedding table of dimension $|V| \times d$

- results in a list of word vectors $v_{1}, v_{2}, \ldots, v_{k}$ where $v_{i}$ corresponds to the word vector for word $w_{i}$

2. We stack these vectors to form a matrix of dimension $d \times k$

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

Input: The cat sat on the

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

## Input: The cat sat on the

1. Look up vectors:
$\left(\begin{array}{c}0.544 \\ -0.678 \\ 0.604 \\ 0.944 \\ 0.632\end{array}\right)$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

Input: The cat sat on the

1. Look up vectors:
$\left(\begin{array}{c}0.544 \\ -0.678 \\ 0.604 \\ 0.944 \\ 0.632\end{array}\right),\left(\begin{array}{c}-0.023 \\ 1.354 \\ -0.553 \\ -0.367 \\ 0.975\end{array}\right)$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

Input: The cat sat on the

1. Look up vectors:

$$
\left(\begin{array}{c}
0.544 \\
-0.678 \\
0.604 \\
0.944 \\
0.632
\end{array}\right),\left(\begin{array}{c}
-0.023 \\
1.354 \\
-0.553 \\
-0.367 \\
0.975
\end{array}\right),\left(\begin{array}{c}
-1.079 \\
-0.612 \\
0.594 \\
-1.057 \\
-1.186
\end{array}\right)
$$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

## Input: The cat sat on the

1. Look up vectors:

$$
\left(\begin{array}{c}
0.544 \\
-0.678 \\
0.604 \\
0.944 \\
0.632
\end{array}\right),\left(\begin{array}{c}
-0.023 \\
1.354 \\
-0.553 \\
-0.367 \\
0.975
\end{array}\right),\left(\begin{array}{c}
-1.079 \\
-0.612 \\
0.594 \\
-1.057 \\
-1.186
\end{array}\right),\left(\begin{array}{c}
-0.262 \\
-0.923 \\
1.097 \\
-0.724 \\
-1.078
\end{array}\right)
$$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

## Input: The cat sat on the

1. Look up vectors:

$$
\left(\begin{array}{c}
0.544 \\
-0.678 \\
0.604 \\
0.944 \\
0.632
\end{array}\right),\left(\begin{array}{c}
-0.023 \\
1.354 \\
-0.553 \\
-0.367 \\
0.975
\end{array}\right),\left(\begin{array}{c}
-1.079 \\
-0.612 \\
0.594 \\
-1.057 \\
-1.186
\end{array}\right),\left(\begin{array}{c}
-0.262 \\
-0.923 \\
1.097 \\
-0.724 \\
-1.078
\end{array}\right),\left(\begin{array}{c}
0.544 \\
-0.678 \\
0.604 \\
0.944 \\
0.632
\end{array}\right)
$$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ : Example

Input: The cat sat on the

1. Look up vectors:

$$
\left(\begin{array}{c}
0.544 \\
-0.678 \\
0.604 \\
0.944 \\
0.632
\end{array}\right),\left(\begin{array}{c}
-0.023 \\
1.354 \\
-0.553 \\
-0.367 \\
0.975
\end{array}\right),\left(\begin{array}{c}
-1.079 \\
-0.612 \\
0.594 \\
-1.057 \\
-1.186
\end{array}\right),\left(\begin{array}{c}
-0.262 \\
-0.923 \\
1.097 \\
-0.724 \\
-1.078
\end{array}\right),\left(\begin{array}{c}
0.544 \\
-0.678 \\
0.604 \\
0.944 \\
0.632
\end{array}\right)
$$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

2. Stack vectors to form input matrix of dimension $d \times k$ :

$$
\left(\begin{array}{ccccc}
0.544 & -0.023 & -1.079 & -0.262 & 0.544 \\
-0.678 & 1.354 & -0.612 & -0.923 & -0.678 \\
0.604 & -0.553 & 0.594 & 1.097 & 0.604 \\
0.944 & -0.367 & -1.057 & -0.724 & 0.944 \\
0.632 & 0.975 & -1.186 & -1.078 & 0.632
\end{array}\right)
$$

## input representation

## A neural language model

## Context

## Input representation

$\downarrow$ ?

## Some mysterious neural network

Context of previous words $w_{1}, w_{2}, \ldots, w_{k}$
Matrix with word embeddings

Probability distribution over the next word $P\left(w_{k+1}\right)$

## A neural language model

## Context

## Input representation

## $\downarrow ?$


$P\left(w_{k+1}\right)$

## Some mysterious neural network

Context of previous words $w_{1}, w_{2}, \ldots, w_{k}$
Matrix with word embeddings

Vector representing the context
Probability distribution over the next word $P\left(w_{k+1}\right)$

## Computing the probability of the next word: SoftMax

Context representation

## $P\left(w_{k+1}\right)$

Weight matrix S :

|  | $d_{1}$ | $d_{2}$ | $\ldots$ | $d_{l-1}$ | $d_{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -4.496 | 0.363 | $\ldots$ | 5.246 | 0.534 |
| dog | -0.053 | 0.652 | $\ldots$ | -1.370 | -2.637 |
| mat | 0.610 | 0.079 | $\ldots$ | 0.750 | -1.942 |
| on | -0.262 | -0.657 | $\ldots$ | 0.897 | -1.577 |
| sat | 0.945 | -0.864 | $\ldots$ | -3.184 | 0.991 |
| the | 0.739 | 0.902 | $\ldots$ | -5.206 | 3.288 |

$$
P\left(w_{k+1} \mid c\right)=\frac{\exp s_{w_{k+1}} \cdot c}{\sum_{w^{\prime} \in V} \exp s_{w^{\prime}} \cdot c}
$$

## Computing the probability of the next word: SoftMax

Context representation

## $P\left(w_{k+1}\right)$

## Weight matrix S :

|  | $d_{1}$ | $d_{2}$ | $\ldots$ | $d_{l-1}$ | $d_{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -4.496 | 0.363 | $\ldots$ | 5.246 | 0.534 |
| dog | -0.053 | 0.652 | $\ldots$ | -1.370 | -2.637 |
| mat | 0.610 | 0.079 | $\ldots$ | 0.750 | -1.942 |
| on | -0.262 | -0.657 | $\ldots$ | 0.897 | -1.577 |
| sat | 0.945 | -0.864 | $\ldots$ | -3.184 | 0.991 |
| the | 0.739 | 0.902 | $\ldots$ | -5.206 | 3.288 |

$l$-dimensional vector representing the context $c$
Probability distribution over the next word $P\left(w_{k+1}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { Dot product between } \\
\text { weight for word } w_{k+1} \\
\text { and context vector } c
\end{array} \\
& P\left(w_{k+1} \mid c\right)=\frac{\exp s_{w_{k+1}} \cdot c}{\sum_{w^{\prime} \in V} \exp s_{w^{\prime}} \cdot c}
\end{aligned}
$$

## Computing the probability of the next word: SoftMax

Context representation

## $P\left(w_{k+1}\right)$

## Weight matrix S:

|  | $d_{1}$ | $d_{2}$ | $\ldots$ | $d_{l-1}$ | $d_{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -4.496 | 0.363 | $\ldots$ | 5.246 | 0.534 |
| dog | -0.053 | 0.652 | $\ldots$ | -1.370 | -2.637 |
| mat | 0.610 | 0.079 | $\ldots$ | 0.750 | -1.942 |
| on | -0.262 | -0.657 | $\ldots$ | 0.897 | -1.577 |
| sat | 0.945 | -0.864 | $\ldots$ | -3.184 | 0.991 |
| the | 0.739 | 0.902 | $\ldots$ | -5.206 | 3.288 |

$l$-dimensional vector representing the context $c$
Probability distribution over the next word $P\left(w_{k+1}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { Dot product between } \\
\text { weight for word } w_{k+1} \\
\text { and context vector } c
\end{array} \\
& P\left(w_{k+1} \mid c\right)=\frac{\exp s_{w_{k+1}} \cdot c}{\sum_{w^{\prime} \in V} \exp s_{w^{\prime}} \cdot c} \\
& \begin{array}{l}
\text { Normalization so that } \\
P\left(w_{k+1} \mid c\right) \text { is a proper } \\
\text { probability distribution }
\end{array}
\end{aligned}
$$

## Computing the probability of the next word: SoftMax

Context representation

## $P\left(w_{k+1}\right)$

Weight matrix S :

|  | $d_{1}$ | $d_{2}$ | $\ldots$ | $d_{l-1}$ | $d_{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -4.496 | 0.363 | $\ldots$ | 5.246 | 0.534 |
| dog | -0.053 | 0.652 | $\ldots$ | -1.370 | -2.637 |
| mat | 0.610 | 0.079 | $\ldots$ | 0.750 | -1.942 |
| on | -0.262 | -0.657 | $\ldots$ | 0.897 | -1.577 |
| sat | 0.945 | -0.864 | $\ldots$ | -3.184 | 0.991 |
| the | 0.739 | 0.902 | $\ldots$ | -5.206 | 3.288 |

$$
P(\text { mat } \mid c)=\frac{\exp s_{\operatorname{mat}} \cdot c}{\sum_{w^{\prime} \in V} \exp s_{w^{\prime}} \cdot c}
$$

## A neural language model

## Context

## Input representation

$\downarrow ?$

$P\left(w_{k+1}\right)$

## Some mysterious neural network

Context of previous words $w_{1}, w_{2}, \ldots, w_{k}$
Matrix with word embeddings

Vector $c$ representing the context
Probability distribution over the next word $P\left(w_{k+1}\right)$

## The Transformer Architecture

## Transformer models

- Transformer models take an input representation and output a context representation
- They explicitly model word order and dependencies between words


## Overall architecture



## Overall architecture



## Self-attention

- Intuition: the output representation $y_{i}$ of a word $w_{i}$ should be a combination of its own representation and the representations of other words that it depends on (syntactically, in terms of meaning, ...)
- We do this by computing an attention vector $\alpha_{i}$
- The output representation $y_{i}$ is a weighted sum of all the input representations

$$
y_{i}=\sum_{0 \leq j \leq k} \alpha_{i j} w_{j}
$$

## Scaled dot-product attention



## Multi-head attention: Motivation

- There are multiple types of dependencies between words:
- Syntactic: "The keys to the cabinet are on the table"
- Arguments of a verb: "The dog chases the cat"
- Co-reference: "The student saw herself in the mirror"
- A single self attention mechanism cannot really capture all these different types of dependencies


## Multi-head attention

- Transformers generally use multiple attention mechanisms (called heads) within a single layer
- Each of these attention mechanisms uses its own set of parameters to compute the attention vector $\alpha_{i}$
- We therefore compute a separate attention vector for each of the $p$ heads: $\alpha_{i}^{(1)}, \alpha_{i}^{(2)}, \ldots, \alpha_{i}^{(p)}$ and compute a separate weighted output representation for each head: $y_{i}^{(1)}, y_{i}^{(2)}, \ldots, y_{i}^{(p)}$


## Multi-head attention

- The weighted output representations $y_{i}^{(1)}, y_{i}^{(2)}, \ldots, y_{i}^{(p)}$ are then concatenated and projected down to the same dimension as the input representation



## Multiple layers

- Instead of just doing all these transformations once, Transformer models usually consist of multiple layers (in practice, usually somewhere between 5 and 20 layers)
- The input of layer $l$ is the output of layer $l-1$



## Modeling word order

- The model so far does not encode anything about word order
- We sum over all word representations (weighted by the attention weights) when computing an output representations
- "the dog chases the cat" and "the cat chases the dog" once again have the same representation
- Solution: positional embeddings


## How to represent a context $w_{1}, w_{2}, \ldots, w_{k}$ with positional embeddings

## Input: The cat sat on the

1. Look up vectors:
$\left(\begin{array}{c}0.544 \\ -0.678 \\ 0.604 \\ 0.944 \\ 0.632\end{array}\right),\left(\begin{array}{c}-0.023 \\ 1.354 \\ -0.553 \\ -0.367 \\ 0.975\end{array}\right),\left(\begin{array}{c}-1.079 \\ -0.612 \\ 0.594 \\ -1.057 \\ -1.186\end{array}\right),\left(\begin{array}{c}-0.262 \\ -0.923 \\ 1.097 \\ -0.724 \\ -1.078\end{array}\right),\left(\begin{array}{c}0.544 \\ -0.678 \\ 0.604 \\ 0.944 \\ 0.632\end{array}\right)$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| cat | -0.023 | 1.354 | -0.553 | -0.367 | 0.975 |
| dog | -0.053 | 0.644 | -0.245 | -0.322 | 1.056 |
| mat | -0.753 | -0.679 | 0.755 | 0.054 | 0.750 |
| on | -0.262 | -0.923 | 1.097 | -0.724 | -1.078 |
| sat | -1.079 | -0.612 | 0.594 | -1.057 | -1.186 |
| the | 0.544 | -0.678 | 0.604 | 0.944 | 0.632 |

2. Stack vectors to form input matrix of dimension $d \times k$ :
$\left(\begin{array}{ccccc}0.544 & -0.023 & -1.079 & -0.262 & 0.544 \\ -0.678 & 1.354 & -0.612 & -0.923 & -0.678 \\ 0.604 & -0.553 & 0.594 & 1.097 & 0.604 \\ 0.944 & -0.367 & -1.057 & -0.724 & 0.944 \\ 0.632 & 0.975 & -1.186 & -1.078 & 0.632\end{array}\right)$
3. Add parameters indicating the position of each word:
$\left(\begin{array}{ccccc}0.544 & -0.023 & -1.079 & -0.262 & 0.544 \\ -0.678 & 1.354 & -0.612 & -0.923 & -0.678 \\ 0.604 & -0.553 & 0.594 & 1.097 & 0.604 \\ 0.944 & -0.367 & -1.057 & -0.724 & 0.944 \\ 0.632 & 0.975 & -1.186 & -1.078 & 0.632 \\ 0.323 & 1.343 & 3.343 & -1.232 & 2.232 \\ -1.234 & 0.448 & -0.379 & -1.114 & -0.593\end{array}\right)$
positional embeddings

|  | $d_{1}$ | $d_{2}$ |
| :---: | :---: | :---: |
| 1 | 0.323 | -1.234 |
| 2 | 1.343 | 0.448 |
| 3 | 3.343 | -0.379 |
| 4 | -1.232 | -1.114 |
| 5 | 2.232 | -0.593 |
| 6 | 0.534 | -1.988 |

## Putting it all together: The full Transformer model



## A neural language model

## Context

## Input representation

$\downarrow ?$

$P\left(w_{k+1}\right)$

## Some mysterious neural network

Context of previous words $w_{1}, w_{2}, \ldots, w_{k}$
Matrix with word embeddings

Vector $c$ representing the context
Probability distribution over the next word $P\left(w_{k+1}\right)$

## A neural language model

Input representation

Transformers


Context of previous words $w_{1}, w_{2}, \ldots, w_{k}$
Matrix with word embeddings

Several layers of multi-head attention (+ some other things)

Vector $c$ representing the context
$P\left(w_{k+1}\right)$
I
$\square$
-


BERT

## Bidirectional Encoder Representations from Transformers (BERT)



## Training

## Masked Language Modeling

```
ie chef cooked the meal
```


## Trained on:

BooksCorpus (800M words)
English Wikipedia (2,500M words).

GPT-3

## Generative Pretrained Transformer 3 (GPT-3)



$$
\begin{aligned}
& \text { Trained on } \\
\sim & 400 \mathrm{~B} \text { tokens! }
\end{aligned}
$$

## Training

## Language Modeling



https://huggingface.co/blog/large-language-models

## Progress in NLU

SQuAD 2.0


MNLI


Does this mean these models exhibit deep understanding abilities?!?

