Preregistration, Open Science & GitHub

Judith Degen & Sebastian Schuster LSA 2021 minicourse

Jan 7, 2021

A typical psycholinguistics study

Hypothesis

Reading of sentences with reduced relative clauses is slower than reading of sentences with overt complementizer

H₀: Average reading times of both sentence types are equal

The horse raced past the barn fell into a ditch.

The horse that was raced past the barn fell into a ditch.

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

- 1. Number of subjects per condition
 - a. Run 10 subjects per condition
 - b. Perform a t-test
 - c. If p < .05: Publish paper!
 - Otherwise: Go to step a.

- 2. Have multiple dependent variables
 - a. Run tests to predict each of the variables
 - b. Pick the dependent variable that gives you a significant *p*-value

The horse raced past the barn fell nto a ditch. The horse that was raced past the barn fell nto a ditch.

- 3. Run models with many different independent variables
 - a. Have a set of many independent variables
 - b. Run models with various combinations and interactions until your manipulation is significant

- 4. Have conditions that you don't report on
 - a. Run n > 2 conditions
 - b. Pick 2 conditions which differ significantly and don't tell anybody about the other conditions

DON'T DO ANY OF THESE THINGS!!!

	Significance level		
Researcher degrees of freedom	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%

	Significance level		
Researcher degrees of freedom	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%
Combine Situations A and B	26.0%	14.4%	3.3%
Combine Situations A, B, and C	50.9%	30.9%	8.4%
Combine Situations A, B, C, and D	81.5%	60.7%	21.5%

p-values

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Pre-registration

- To keep p-value meaningful, fix the following things before collecting data
 - 1. number of subjects you'll run
 - exclusion criteria:
 Which data points are you going to exclude from your analysis
 - 3. dependent variable
 - 4. independent variables
 - 5. experimental conditions

Preregistration

- Preregistering provides you (and reviewers and readers of your paper) with proof that you actually fixed all these things
- Only requires filling out a short questionnaire which is permanently stored on a pre-registration platform

A preregistration workflow

- 1. Come up with and implement experiment
- 2. Run pilot study with 2-4 subjects
- 3. Write analysis scripts and test them with pilot data
- 4. Preregister study and upload analysis scripts to OSF
- 5. Run actual study
- 6. Analyze data with pre-registered analysis script
- 7. (optional) Do **exploratory** post-hoc analyses

What you'll do today

- 1. Implement experiment
- 2. Preregister study
- 3. Test experiment
- 4. Write analysis scripts
- 5. Analyze pooled data from the class

Git & GitHub

What is Git?

- A version control (VC) system that keeps a history of all previous versions of files
 - allows you to go back to previous versions of a file anytime

Repository:

Git and GitHub

Computer A

Computer B

Computer C

Why use Git and GitHub?

No more manuscript_v2_oct15_final_revisions_v3_seb.pdf!

Why use Git and GitHub?

- Easy synchronization of project folder between people: makes it easy to collaborate (no more emailing of files)
- Provides backups of your data and project files
- Promotes open science: Makes all your project data and experiments publicly available
- You can set up automatic hosting of your experiments on GitHub

Basic structure of a research repository

- my-project/
 - experiments: code necessary to run experiments
 - data: anonymized (!) data from experiments
 - analysis: scripts to analyze and visualize data
 - writing: manuscripts, papers, etc.

Add folders for each experiment into experiments/data/analysis folders: e.g., 1_pilot, 2_implicature_strength, ...

Interacting with a repository

- 1. Create and edit files as you would in a regular folder
- 2. To preserve the current state of files, **commit the current version** to the repository
- 3. To make your recent commits available on GitHub and to you collaborators, **push** the repository to GitHub
- 4. To update your local repository with changes from other people, **pull** the repository from GitHub

BASIC CONCEPTS & TERMINOLOGY

pulling: download changes from server

tracked files: marked to be under VC

ignores: file types excluded from VC

adding/staging: mark local changes as

to be committed

commit: save local changes locally

stage area (aka index): everything that is locally committed but not yet pushed

pushing: upload local changes to server

Now...

- 1. Create your own repository and edit files
- 2. Modify an existing experiment
- 3. Preregister the experiment